
Direct characterization of coherence of quantum
detectors by sequential measurements
Liang Xu ,a,b,c,d,e,† Huichao Xu ,a,b,c,d,f,† Jie Xie,a,b,c,d Hui Li,a,b,c,d Lin Zhou,a,b,c,d Feixiang Xu,a,b,c,d and Lijian Zhanga,b,c,d,*
aNanjing University, College of Engineering and Applied Sciences, Nanjing, China
bNanjing University, Collaborative Innovation Center of Advanced Microstructures, Nanjing, China
cNanjing University, National Laboratory of Solid State Microstructures, Nanjing, China
dNanjing University, Key Laboratory of Intelligent Optical Sensing and Manipulation, Nanjing, China
eResearch Center for Quantum Sensing, Zhejiang Laboratory, Hangzhou, China
fPurple Mountain Laboratories, Nanjing, China

Abstract. The quantum properties of quantum measurements are indispensable resources in quantum in-
formation processing and have drawn extensive research interest. The conventional approach to revealing
quantum properties relies on the reconstruction of entire measurement operators by quantum detector
tomography. However, many specific properties can be determined by a part of the matrix components of the
measurement operators, which makes it possible to simplify the characterization process. We propose a
general framework to directly obtain individual matrix elements of the measurement operators by sequentially
measuring two noncompatible observables. This method allows us to circumvent the complete tomography of
the quantum measurement and extract the required information. We experimentally implement this scheme to
monitor the coherent evolution of a general quantum measurement by determining the off-diagonal matrix
elements. The investigation of the measurement precision indicates the good feasibility of our protocol for
arbitrary quantum measurements. Our results pave the way for revealing the quantum properties of quantum
measurements by selectively determining the matrix components of the measurement operators.
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1 Introduction

The quantum properties of quantum measurements have been
widely regarded as an essential resource for the preparation of
quantum states,1–3 achieving the advantages of quantum technol-
ogies,4–7 as well as the study of fundamental quantum theories.8–15

The time-reversal approach allows for the investigation of the
properties of quantum measurements qualitatively from the
perspective of quantum states.16–18 In addition, the quantum
resource theories for quantification of quantum properties of
quantum measurements have been developed very recently19–22

and have been applied to investigate coherence of quantum-
optical detectors.23 Thus developing efficient approaches to

characterize the quantum properties of quantum measurements
is important for both the fundamental investigations and prac-
tical applications.

A general quantum measurement and all its properties can be
completely determined by the positive operator-valued measure
(POVM) fΠ̂lg, in which the element Π̂l denotes the measurement
operator corresponding to the outcome l. Several approaches
have been developed to determine the unknown POVM,24–27 of
which the most representative is quantum detector tomography
(QDT).24 In QDT, a set of probe states fρðmÞg are prepared to
input the unknown measurement apparatus, and the probability
of obtaining the outcome l is given by pðmÞ

l ¼ TrðρðmÞΠ̂lÞ.
Provided that the input states are informationally complete
for the tomography, the POVM fΠ̂lg can be reconstructed by
minimizing the gap between the theoretical calculation and the
experimental results. To date, QDT has achieved great success
in characterizing a variety of quantum detectors, including
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avalanche photodiodes,28 time-multiplexed photon-number-
resolving detectors,24,29,30 transition edge sensors,31 and super-
conducting nanowire detectors.32 As the quantum detectors be-
come increasingly complicated, the standard QDT is confronted
with the experimental and computational challenges, which
prompts the exploration of some helpful shortcuts. For example,
the determination of a few key parameters that describe the
quantum detectors makes it possible to largely reduce the char-
acterization complexity.33 The quantum detectors can also be
self-tested with certain quantum states in the absence of prior
knowledge of the apparatus.34–37 The emerging data-pattern
approach realizes the operational tomography of quantum states
through fitting the detector response, which is robust to imperfec-
tions of the experimental setup.38,39

Though QDT is a generic protocol to acquire entire measure-
ment operators, it does not have the direct access to the single-
matrix components of the measurement operator. The complex-
ity of the reconstruction algorithm in QDT increases dramati-
cally with the increase of the dimensions of the quantum system
(QS). Typically, tomography of full measurement operator is
considered as the prerequisite for characterizing the properties
of quantum measurements.23 However, in some situations, the
complete determination of the measurement operator is not
necessary to fulfil specific tasks, which makes it possible to
simplify the characterization process. For example, if the input
state is known to lie in the subspace of the QS, it only requires
the corresponding matrix components of the measurement op-
erators to predict the probability of outcomes.29,40,41 In particular,
the coherence of a quantum measurement is largely determined
by the off-diagonal matrix components of its measurement op-
erators in certain bases.23

Recently, Lundeen et al.42 proposed a method to directly mea-
sure the probability amplitudes of the wavefunction using the for-
malism of the weak measurement and weak values. This method,
known as direct quantum state tomography, opens up a new
avenue for quantum tomography technique. The direct tomogra-
phy (DT) protocol has been extensively studied and the scope of
its application is expanded to high-dimensional states,43–51 mixed
states52–56 and entangled states,57,58 quantum processes,59 and
quantum measurements.60 The development of the DT theory
from the original weak-coupling approximation to the rigorous
validation with the arbitrary coupling strength ensures the accu-
racy and simultaneously improves the precision.61–68 Moreover,
direct state tomography allows the direct measurement of any
single-matrix entry of the density matrix, which has provided an
exponential reduction of measurement complexity compared to
standard quantum state tomography in determining a sparse mul-
tiparticle state.53–56,69 Recent work has extended the idea to realize

the direct characterization of full measurement operators, based
on weak values, showing the potential advantages over QDT in
operational and computational complexity.60 In view of the
unique advantages of the DT, it is expected that the generalization
of the DT scheme for directly characterizing the matrix compo-
nents of measurement operators allows for the extraction of the
properties of the quantum measurement in a more efficient way.

In this paper, we propose a framework to directly character-
ize the individual matrix components of the measurement oper-
ators by sequentially measuring two noncompatible observables
with two independent meter states (MSs). In the following, the
unknown quantum detector performs measurement on the QS.
The specific matrix entry of the measurement operator can be
extracted from the collective measurements on the MSs when
the corresponding outcomes of the quantum detector are ob-
tained. Our procedure is rigorously valid with the arbitrary
non-zero coupling strength. The investigations of the measure-
ment precision indicate the good feasibility of our scheme to
characterize arbitrary quantum measurement. We experimen-
tally demonstrate our protocol to monitor the evolution of co-
herence of the quantum measurement in two different situations,
the dephasing and the phase rotation, by characterizing the as-
sociated off-diagonal matrix components. Our results show the
great potential of the DT for capturing the quantum properties of
the quantum measurement through partial determination of the
measurement operators.

2 Theoretical Framework

2.1 Directly Determining the Matrix Components
of the Measurement Operators

The schematic diagram for direct characterization of the matrix
components of the POVM is shown in Fig. 1. We represent the
POVM fΠ̂lg acting on the d-dimensional QS with the orthogo-
nal basis fjajig (A), and the matrix entry of the measurement

operator Π̂l is given by EðlÞ
ajak ¼ hajjΠ̂ljaki. If j ¼ k, EðlÞ

ajak cor-
responds to the diagonal matrix entry, which can be easily de-

termined by inputting a preselected QS state ρðjÞs ¼ jajihajj to
the quantum detector and collecting the probability pl ¼
hajjΠ̂ljaji of obtaining the outcome l. By contrast, the off-

diagonal matrix entry EðlÞ
ajak (j ≠ k), generally a complex

number, is related to the coherence of the operator and usually
indirectly reconstructed in the conventional QDT. In order to
directly measure EðlÞ

ajak (j ≠ k), we perform the sequential mea-
surement of the observables ÔB ¼ Î − 2jb0ihb0j (note that jb0i

Quantum system
Measurement

Collective
measurement

A B

Direct 
characterization

Post-selectionMeter state A

Meter state B

Fig. 1 The schematic diagram for direct characterization of thematrix components of the POVM fΠ̂lg.
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is a state vector which is a superposition of all the base states
in basis A with the equal probability amplitudes, i.e.,
jb0i ∝

P
jjaji) and ÔðkÞ

A ¼ Î − 2jakihakj on the initial state

ρðjÞs with two independent two-dimensional MSs initialized as
j0iB and j0iA, respectively. The measurement of the observable
Ô (generally referring to the observable ÔB or ÔðkÞ

A ) is imple-
mented by coupling the QS with the MS under the Hamiltonian
Ĥ ¼ gδðt − t0ÞÔ ⊗ σ̂y, in which g is the coupling strength and
σ̂y ¼ iðj1ih0j − j0ih1jÞ is the observable of the MS. Since the

observables ÔB and ÔðkÞ
A do not commute, the measurement

has to be performed in a particular order.
The sequential measurement process can be described by the

unitary evolution of the system-MS ρsm ¼ ρðjÞs ⊗ ρm;B ⊗ ρm;A
with the first transformation,

ÛB ¼ expð−igBÔB ⊗ σ̂y;B ⊗ ÎAÞ; (1)

and the second transformation,

ÛðkÞ
A ¼ expð−igAÔðkÞ

A ⊗ ÎB ⊗ σ̂y;AÞ; (2)

leading to the joint state,

ρJ ¼ ÛðkÞ
A ÛBρsmÛ

†
BÛ

ðkÞ†
A : (3)

Then the unknown quantum detector to be characterized
performs the postselection measurement fΠ̂lg on the QS.
Depending on the measurement outcome l, the surviving final
MS is given by ρ0m;A;B ¼ TrsðΠ̂l ⊗ ÎB ⊗ ÎAρJÞ=pf, in which
Trsð·Þ denotes the partial trace operation on the QS, and pf ¼
TrðΠ̂l ⊗ ÎB ⊗ ÎAρJÞ is the probability for getting the outcome l.

The matrix entry EðlÞ
ajak is related to the average value of the

observables ÔB and ÔðkÞ
A by

EðlÞ
ajak ¼

d
4
Tr

�
Π̂lðÎ − ÔðkÞ

A ÞðÎ − ÔBÞρðjÞs

�
: (4)

Both of the observables ÔB and ÔðkÞ
A are designed to satisfy

Ô2 ¼ Î so that the unitary is exactly expanded as Û ¼
expð−igÔ ⊗ σ̂yÞ ¼ cos gÎ ⊗ Î − i sin gÔ ⊗ σ̂y. The right side
of Eq. (4) can be extracted by the joint measurement of post-
selected MS ρ0m;A;B with the observables

P̂ ¼
ffiffiffi
d

p �
Î þ σ̂z
4 cos2 g

− σ̂x
4 sin g cos g

�
;

Q̂ ¼ −
ffiffiffi
d

p
σ̂y

4 sin g cos g
; (5)

each in the subsystems A and B. By defining the joint observ-
ables of MSs A and B as R̂B;A ¼ P̂BP̂A − Q̂BQ̂A and T̂B;A ¼
P̂BQ̂A þ Q̂BP̂A, we obtain the real and the imaginary parts of
EðlÞ
ajak :

Re½EðlÞ
ajak � ¼ TrðΠ̂l ⊗ R̂B;AρJÞ;

Im½EðlÞ
ajak � ¼ TrðΠ̂l ⊗ T̂B;AρJÞ: (6)

Here, the subscripts of the coupling strength g and the Pauli
operators coincide with those of the operators P̂ and Q̂. For
the sake of convenience, gA ¼ gB ¼ g in the rest of this article.

2.2 Precision Analysis on Directly Characterizing the
Matrix Components of the Measurement Operators

The accuracy and the precision are two essential indicators to
evaluate a measurement scheme. There are no systematic errors
in our protocol, since the derivation is rigorous for the arbitrary
coupling strength g. According to previous studies, the precision
of the DT applied to the quantum states is sensitive to both the
coupling strength and the unknown states.70 The increase of the
coupling strength is beneficial to improving the precision.62–68

When the unknown state approaches being orthogonal to the
postselected state, the DT protocol is prone to large statistical
errors and is therefore highly inefficient.70,71 Here, we theoreti-
cally investigate the precision of the DT protocol applied to the
quantum measurement to verify the feasibility of our protocol.

Given that the real and the imaginary parts of the matrix com-
ponents are independently measured, we quantify the measure-
ment precision with the total variance Δ2EðlÞ

akaj ¼ Δ2 Re½EðlÞ
akaj �þ

Δ2 Im½EðlÞ
akaj �. According to Eq. (6), the variance can be de-

rived by

Δ2EðlÞ
akaj ¼ hΔ2R̂B;Aif þ hΔ2T̂B;Aif; (7)

where hΔ2M̂if ¼ TrðΠ̂lM̂
2ρJÞ − ½TrðΠ̂lM̂ρJÞ�2. Since the oper-

ators R̂B;A and T̂B;A are usually hard to experimentally construct,
an alternative is to infer the expected values of R̂B;A and T̂B;A
as well as their squares, from the complete measurement results
of the MSs B and A, each projected to the mutually unbiased
bases, i.e., fj0i; j1ig; fjþi; j−ig; fj↻i; j↺ig with j�i ¼ ðj0i �
j1iÞ= ffiffiffi

2
p

and j↻i; j↺i ¼ ðj0i � ij1iÞ= ffiffiffi
2

p
. The obtained proba-

bility distribution is represented by fWmng, wherem and n label
the projective states jmBi and jmAi of the MSs B and A, respec-
tively. The experimental variance can be obtained from fWmng
with the error transfer formula

Δ2EðlÞ
akaj ¼

X
m;n

���� ∂E
ðlÞ
akaj

∂Prmn

����
2

δ2Wmn: (8)

Consider that N particles are used for one measurement ofWmn.
The variance of the probability is approximated as δ2Wmn≈
Wmn=N in the large N limit due to the Poissonian statistic.

As a demonstration, we theoretically derive the precision of
directly measuring the off-diagonal matrix entry E1,0ðθÞ of a
general measurement operator for a two-dimensional QS as
follows:

Π̂ðθÞ ¼ η

�
cos2 θ E0,1ðθÞ
E1,0ðθÞ sin2 θ

�
; (9)

with different coupling strength g. According to Eq. (8), the
variance of the off-diagonal matrix entry E1,0ðθÞ is given by

Δ2E1,0ðθÞ ¼
ðsin2 θ þ sin2 gÞð1þ 2 sin2 gÞ

ηN sin4ð2gÞ : (10)
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In Fig. 2(a), we show how the variance of E1,0ðθÞ changes with
different g for four values of θ. We find that the statistical errors
Δ2E1,0ðθÞ become large with a small coupling strength (g → 0
or g → π=2), whereas the strong coupling strength (g → π=4)
significantly decreases the variance to Δ2E1,0ðθÞjg¼π=4 ¼
ð1þ 2 sin2 θÞ=ðηNÞ. We also compare the characterization pre-
cision of E1,0ðθÞ associated with different POVM parameters θ
in Fig. 2(b). The statistical errors Δ2E1,0ðθÞ remain finite over
all θ indicating that our protocol is applicable to characterize the
arbitrary POVM of a two-dimensional QS. In addition, the vari-
ance Δ2E1,0ðθÞ is related to the parameter θ but does not depend
on the value of E1,0ðθÞ. This implies that the change of the off-
diagonal matrix components of the measurement operator, such
as the dephasing and the phase rotation process, will not affect
the characterization precision. We note that the choice of the
sequential observables ÔB and ÔðkÞ

A is indeed not unique. How
to choose the optimal observables of the QS to achieve the best
characterization precision remains an open question in the field
of DT. If the sequential observables of the QS are changed, the
collective observables R̂B;A and T̂B;A of the MSs should also be
changed correspondingly, and the method to reveal the matrix
components EðlÞ

ajak may be more involved.
It has been shown that the completeness condition of the

POVM fΠ̂lg, i.e.,
P

lΠ̂l ¼ Î, can be used to improve the pre-
cision of direct QDT.60 In the following, we prove that the same
condition is also helpful to improve the precision in the direct
characterization of EðlÞ

ajakðj ≠ kÞ. Since the real part of the com-

ponents EðlÞ
ajak satisfies

P
l Re½EðlÞ

ajak � ¼ 0, the value of Re½EðlÞ
ajak �

can be not only obtained by the direct measurement but also
inferred from the components of other POVM elements
Re½EðuÞ

ajak � (u ≠ l) by Re½EðlÞ°
ajak � ¼ −Pu≠lRe½EðuÞ

ajak �. The extra in-
formation obtained by Re½EðlÞ°

ajak � can be used to improve the
measurement precision. To acquire the best precision, we adopt
the weighted average of Re½EðlÞ

ajak � and Re½EðlÞ°
ajak � with the

weighting factors w and w◦, respectively. The optimal weighting
factors satisfy the condition

wþ w◦ ¼ 1;

w ∝
1

Δ2Re½EðlÞ
ajak �

;

w◦ ∝
1P

u≠lΔ2 Re½EðuÞ
ajak �

; (11)

leading to the optimal precision Δ2Re½EðlÞ0
ajak � ¼ ww◦=P

uΔ2 Re½EðlÞ
ajak � < Δ2 Re½EðlÞ

ajak �.

3 Experiment
In the experiment, we apply the DT protocol to characterize
the SIC POVM in the polarization degree of freedom (DOF)
of photons. Since the coherence between two polarization base
states only changes the off-diagonal components of the mea-
surement operators, we demonstrate that the dephasing and
the phase rotation of the SIC POVM can be monitored by only
characterizing the corresponding matrix components.

The experimental setup is shown in Fig. 3. We refer to the
polarization DOF of photons as the QS with the eigenstates jHi
and jVi. Single photons generated by the spontaneous paramet-
ric downconversion pass through the polarizing beam splitter
(PBS) and a half-wave plate (HWP) at 45 deg to preselect the
QS to jVi. The “measurement 1” and “measurement 2”modules
implement the measurement of the observables ÔB ¼ jDihDj −
jAihAj and ÔA ¼ jHihHj − jVihVj, where jDi ¼ ðjHi þ jViÞ=ffiffiffi
2

p
and jAi ¼ ðjHi − jViÞ= ffiffiffi

2
p

.
Here, we take measurement 1 as an example to describe

the working principle of the coupling scenario. The HWP at
22.5 deg before the polarizing beam displacer (PBD) transforms
the measurement basis fjDi; jAig into fjHi; jVig, and the
observable σ̂z ¼ jHihHj − jVihVj is measured between the two
PBDs. The first PBD converts the DOF of the QS into the
optical path, with jHi → j0i and jVi → j1i. The polarization
of photons in each path initialized to jHi is used as the MS.
Two HWPs are arranged in parallel, each on different paths,
and are rotated, respectively, to g=2 and −g=2, to realize the

(a)

X

Y

(b)

X
Y

Fig. 2 The measurement precision of the off-diagonal matrix element E1,0ðθÞ of the measurement
operator Π̂ðθÞ in a two-dimensional QS. (a) The variance of E1,0ðθÞ is plotted with different g for
four values of θ ¼ 0; π= 4; θsic; π with θsic ¼ acosð1= ffiffiffi

3
p Þ. (b) The variance of E1,0ðθÞ changes with

different parameters θ for the coupling strength g ¼ π= 16; π= 8; π= 4, 3π= 8. Here, we take η ¼ 1= 2
and N ¼ 12; 790 to coincide with our experimental conditions. The points X and Y refer to the
precision of directly measuring the off-diagonal matrix entry of the two-dimensional symmetric in-
formationally complete positive operator-valued measure (SIC POVM) with the coupling strength
g ¼ π= 4.

Xu et al.: Direct characteration of coherence of quantum detectors by sequential measurements

Advanced Photonics 066001-4 Nov/Dec 2021 • Vol. 3(6)



coupling between the QS and the MS. Afterward, we measure
the polarization of photons to extract the information of the MS
by a quarter-wave plate (QWP), an HWP, and a polarizer. The
photons in two paths that pass through the polarizer recombine
at the second PBD and the subsequent two HWPs at 45 deg and
22.5 deg recover the measurement basis to fjHi; jVig. A similar
setup of measurement 2 performs the measurement of the oper-
ator ÔA. Finally, the photons input the unknown detector for the
postselection. By collecting the photons that arrive at the out-
puts, we obtain the measurement results.

We construct the SIC POVM fΠ̂lg with Π̂l ¼ 1
2
jψ lihψ lj

ðl ¼ 1; 2; 3; 4Þ and

jψ1i ¼ jHi;
jψ2i ¼

�
jHi − ffiffiffi

2
p

jVi
	. ffiffiffi

3
p

;

jψ3i ¼
�
jHi þ

ffiffiffi
2

p
e−i2π=3jVi

	. ffiffiffi
3

p
;

jψ4i ¼
�
jHi þ

ffiffiffi
2

p
ei2π=3jVi

	. ffiffiffi
3

p
; (12)

through the quantum walk to perform the postselection mea-
surement of the QS.72 The dephasing of the POVM is realized
by several full-wave plates (FWPs), which separate the wave
packets in polarization states jHi and jVi, i.e., jφðtHÞi and
jφðtVÞi in the temporal DOF. This separation causes the de-

phasing of the POVM and the off-diagonal entries EðlÞ
VH are

transformed to EðlÞ;D
VH ¼ EðlÞ

VHξ with the coefficient ξ ¼
hφðtHÞjφðtVÞi. The derivation of the dephasing process and the
calibration of the coefficient ξ are provided in the Appendix.
The phase rotation is implemented by the liquid crystal plate
(LCP), which imposes a relative phase ϕlc between jHi and jVi.

The operation is equivalent to the unitary evolution Ûlc ¼
expði ϕlc

2
ĈÞ of the input state, with Ĉ ¼ jHihHj − jVihVj.

When the evolution is inversely performed on the SIC POVM,

the non-diagonal elements EðlÞ
VH are transformed to EðlÞ;R

VH ¼
EðlÞ
VH expð−iϕlcÞ. The calibration results of the ϕlc are shown

in the Appendix, Sec. 6.2.

4 Results
In Fig. 4, we compare the experimental results of DTwith those
of the conventional tomography (CT) as well as the ideal SIC
POVM during the dephasing and phase rotation process. The
detailed information of characterizing the experimental SIC
POVM by CT is provided in the Supplementary Material.
The results of CT, shown in Fig. 4, are inferred from the exper-
imental SIC POVM and the calibrated coefficient ξ (during the
dephasing process) or the phase ϕlc (during the phase rotation
process). As shown in Fig. 4(a), the points in each connecting
solid line along the direction of arrows correspond to the relative
time delay ϵ ¼ 0λ; 20λ; 40λ; 60λ; 80λ; 120λ; 160λ; 200λ; 240λ.
The increase of the relative time delay ϵ between the separated
wave packets reduces the overlap of the temporal wavefunction
ξ ¼ hφðtHÞjφðtVÞi, which leads to the dephasing of the quantum
measurement. The relation between the relative time delay ϵ
and the coefficient ξ is calibrated in Fig. 5(b) of the Appendix,
Sec. 6.2. Correspondingly, the modulus of EðlÞ;D

VH gradually ap-
proaches 0, implying that the quantum measurement becomes
incoherent, i.e., loses the ability of detecting the coherence in-
formation of a quantum state.

In Fig. 4(b), we plot EðlÞ;R
VH during the phase-rotation process.

The imposed voltage on the LCP is adjusted to obtain ϕlc ¼
2π=5 and 4π=5. A HWP at 0 deg is placed before the
LCP to obtain ϕlc ¼ −3π=5 and −π=5. The rotated points

Fig. 3 The experimental setup for characterization of the evolution of the quantum measurement.
The pulse laser at 830 nm enters a BBO crystal for the upconversion. The generated photons at
415 nm get through a KDP crystal for the spontaneous parametric downconversion, which simul-
taneously produces a pair of photons. The single photon is heralded by detecting the other one
of the pair. The measurement 1 and measurement 2 modules successively implement the unitary

transformation ÛB and Û
ðkÞ
A as well as the joint measurement on the MSs. In the following, the

unknown quantum detector performs the postselection measurement on the polarization DOF of
photons. The quantum detector is composed of the operation of polarization evolution, i.e.,
“(I) dephasing” and “(II) phase rotation” and the SIC POVM realized by the quantum walk. The
abbreviations of the equipment are as follows: PBS, polarizing beam splitter; BBO, β-barium
borate crystal; KDP, potassium dihydrogen phosphate; HWP, half-wave plate; QWP, quarter-wave
plate; PBD, polarizing beam displacer; FWP, full-wave plate; and LCP, liquid-crystal plate.
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(a) (b) (c)

Fig. 5 The calibration of the equipment in the dephasing and the phase rotation process.
(a) The calibration setup. (b) The coefficient ξ changes with the time delay ϵ between the wave
packets in states jHi and jV i. (c) The relative phase ϕlc between the states jHi and jV i changes
with imposed voltage.

(b)(a)

Ideal SIC POVM

1 2 3 4

Results of CT

Results of DT

(c) (d)

Fig. 4 (a), (b) The real and the imaginary parts of the matrix componentsE ðlÞ
VH are plotted during

the dephasing (E ðlÞ;D
VH ) and the phase rotation (E ðlÞ;R

VH ) of the polarization, respectively. The results
of the ideal SIC POVM, the CT, and the DT are represented by the pentagrams, hollow markers,
and solid markers, respectively. In panels (a) and (b), we connect each pentagram with the point
(0, 0), indicating the evolution path of the ideal SIC POVM during the dephasing process as well as
changes of the azimuth angles during the phase rotation process. (c) The statistical errors of

the matrix components E
ðlÞ
VH are provided for both the dephasing and the phase rotation process.

(d) The precision of E ðlÞ0
VH after using the completeness condition of the POVM. The theoretical

precision, represented by the dashed lines in panels (c) and (d), is inferred from the experimental
results of CT. The average photon number per unit time for one collective measurement of the MSs
is about N ¼ 12,790.
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representing EðlÞ;R
VH in the coordinates of its real and imaginary

parts indicate the phase rotation of the quantum measurement.
During the phase rotation process, the modulus of EðlÞ;R

VH remains
unchanged, which indicates that the coherence of the quantum
measurement is maintained.

The total noise in the experiment contains the statistical noise
and the technical noise. The statistical noise originates from the
fluctuations of the input photon numbers per unit time due to the
probabilistic generation of single photons, the loss in the chan-
nel, and the finite trials of the experiment. The technical noise is
caused by the experimental imperfections, e.g., the equipment
vibration or the air turbulence. As shown in Figs. 4(a) and 4(b),
the experimental results fluctuate around the theoretical predic-
tions due to both the statistical noise and the technical noise.
The technical noise can be reduced by isolating the noise source
or adopting appropriate signal modulation. The statistical noise
determines the ultimate precision that can be achieved for a spe-
cific amount of input resources, which is an important metric to
evaluate whether a measurement protocol is efficient or not.

The statistical errors of the experimental results are shown in
Fig. 4(c). The theoretical precision, represented by dashed lines
in Figs. 4(c) and 4(d), is inferred by assuming that the matrix
components EðlÞ

VH of the experimental SIC POVM obtained by
the CT are directly characterized. As a comparison, we can refer
to Fig. 2 for the theoretical precision of the ideal SIC POVM,
represented by the points X (θ ¼ 0; g ¼ π=4) and Y (θ ¼
acosð1= ffiffiffi

3
p Þ; g ¼ π=4). Since the experimental SIC POVM de-

viates from the ideal SIC POVM, the precisions of l ¼ 2, 3; 4
do not equate with each other. The experimental precision is
obtained from the Monte Carlo simulation based on the exper-
imental probability distribution and the practical photon statis-
tics to eliminate the effect of the technical noise. Our results
closely follow the theoretical predictions indicating that the pre-
cision of measuring the off-diagonal matrix components of the
POVM is immune to the dephasing and phase rotation of the
quantum measurement. We can also find that the characteriza-
tion precision after using the completeness condition in Fig. 4(d)
is significantly improved compared to the original precision
in Fig. 4(c).

5 Discussion and Conclusion
We have proposed a protocol to directly characterize the indi-
vidual matrix components of the general POVM, extending the
scope of the DT scheme. Our expression is rigorous for the
arbitrary coupling strength, which allows us to change the cou-
pling strength to improve the precision and simultaneously
maintain the accuracy. The statistical errors are finite over all
the choices of the POVM parameter, demonstrating the feasibil-
ity of our protocol for the arbitrary POVM. In particuliar, if the
completeness condition of the POVM is appropriately used, the
measurement precision can be further improved. Our results in-
dicate that the characterization precision is not affected by the
dephasing and phase rotation that only change the off-diagonal
matrix components of the measurement operators. Another typ-
ical noise is the phase diffusion, meaning that the phase of the
quantum measurements randomly jitters. According to the der-
ivations in the paper,73 the phase diffusion decreases the modu-
lus of the off-diagonal matrix components in a similar way to
the dephasing in our work. Therefore, it is expected that the pre-
cision of our protocol is immune to incoherent noise, such as
phase diffusion.

Since some properties of quantum measurements may de-
pend on a part of matrix components of the measurement oper-
ators, this protocol allows us to reveal these properties without
the full tomography. We experimentally demonstrate that the
evolution of the coherence of a quantum measurement can
be monitored through determining the off-diagonal matrix com-
ponents of the measurement operators. Our scheme makes no
assumptions about the basis to represent the measurement op-
erators. The choice of the basis depends on the specific condi-
tions or can be optimized according to the purpose of the
characterization. Sometimes, the choice of the basis is natural.
For example, the photon number basis is typically employed to
represent the measurement operators of photodetectors.24,28–30,40

In some cases, we aim to acquire the response of the quantum
measurements to specific properties of quantum states in which
the basis is specified by that used to define the property.
Additionally, the basis can be optimized to seek the best entan-
glement witness.74 In this work, we choose the typical polariza-
tion basis fjHi; jVig to investigate the coherence evolution of
the quantum measurements, which is basis dependent. Our pro-
tocol also provides the flexibility to characterize the matrix com-
ponents of the measurement operators in any basis of interest by
adjusting the initial quantum state ρðjÞs as well as the observables
ÔB and ÔðkÞ

A while other parts of the theoretical framework re-
main unchanged.

Our protocol can be extended to a high-dimensional QS in
which the coherence information of the quantum measurement
among specified base states is of interest. The conventional
QDT typically requires d2 informationally complete probe
states chosen from at least dþ 1 basis to globally reconstruct
the POVM in a d-dimensional QS. Thus as the dimension d
increases, the preparation of the probe states becomes an exper-
imental challenge, and the computational complexity of the
reconstruction algorithm is significantly increased. Both factors
complicate the task of QDT for high-dimensional QSs. In our
scheme, the preparation of the initial states and the sequentially
measured observables ÔB and ÔðkÞ

A are simply involved in
two bases, i.e., the representation basis fjajig and its Fourier
conjugate fjbig. The matrix components of the POVM can
be directly inferred from the measurement results of the final
MSs without resort to the reconstruction algorithm. When the
matrix components are sparse in the measurement operators,
our scheme can further simplify the characterization process.
Therefore, the direct protocol also shows potential advantages
over the conventional QDT in completely determining the
POVM due to its better generalization to high-dimensional
QSs. In conclusion, by proposing a framework to directly
and precisely measure the arbitrary single-matrix entry of the
measurement operators, our results pave the way for both fully
characterizing the quantum measurement and investigating the
quantum properties of it.

6 Appendix: Dephasing and Phase Rotation
of Quantum Measurements

6.1 Theoretical Derivation

A general POVM can be implemented through quantum walk
with the unitary evolution Û of the QS at the position x ¼ 0.
After the quantum walk, the position x ¼ l corresponds to
the POVM element
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Π̂l ¼ TrW ½ðj0ih0j ⊗ ÎÞÛ†ðjlihlj ⊗ ÎÞÛ�; (13)

where TrW ½·� denotes the partial trace in the walker position
DOF. We implement the dephasing of the POVM fΠ̂lg by cou-
pling the QS to the environment state ρE under the Hamiltonian
ĤSE ¼ ϵ

2
δðt − t0ÞĈ Ω̂ in which Ĉ ¼ jajihajj − jakihakj and Ω̂

are the observables of the QS and the environment, respectively.
By reducing the environment DOF, the measurement operator
Π̂l is transformed to Π̂D

l ¼ TrE½Û†

SEΠ̂l ⊗ ρEÛSE�. We can
infer that the dephasing process only changes the related
matrix components EðlÞ

ajak to EðlÞ;D
ajak ¼ EðlÞ

ajakξ with the coefficient
ξ ¼ Tr½expð−i ϵ

2
Ω̂ÞρE expð−i ϵ

2
Ω̂Þ�.

6.2 Experimental Calibration

To calibrate the relation between the coefficient ξ and the rel-
ative time delay ϵ ¼ jtH − tV j, we construct the setup shown
in Fig. 5(a) in which both the HWPs are set to 22.5 deg. The
photons in jHi enter the calibration setup resulting in the final
state after the second HWP:

ρD ¼ 1þ ξ

2
jHihHj þ 1 − ξ

2
jVihVj: (14)

Then ρD is projected to the basis fjHi; jVig with a PBD,
obtaining the probabilities PH and PV . The parameter ξ is given
by ξ ¼ PH − PV. The relation between ξ and the relative time
delay ϵ is shown in Fig. 5(b) in which we take ϵ from 0 to 260
times the wavelength (λ ¼ 830 nm) and the red circled points
are adopted for the experiment.

The liquid crystal imposes a relative phase ϕlc between jHi
and jVi controlled by the voltage. Through the calibration
setup in Fig. 5(a), the phase can be obtained by ϕlc ¼
arccos½2ðPH − PVÞ�. The calibration results of the relation
between the phase ϕlc and the applied voltage are shown in
Fig. 5(c). Here we adjust the voltages to 1.32 and 2.01 V, and
the relative phases are ∼4π=5 and 2π=5.
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